

Continuous symmetry breaking in a mean-field model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1983 J. Phys. A: Math. Gen. 16 195 (http://iopscience.iop.org/0305-4470/16/1/026)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 30/05/2010 at 16:14

Please note that terms and conditions apply.

Continuous symmetry breaking in a mean-field model

Theodor Eisele⁺ and Richard S Ellis[‡]§

⁺ Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 294, D-6900 Heidelberg 1, BRD

[‡] Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, 01003, USA

Received 14 June 1982

Abstract. A magnetic system on the sites $\{j/n; j = 1, ..., n\}$ of the circle $T \doteq \mathbb{R} \pmod{1}$ is studied in the limit $n \to \infty$. The interaction is defined in terms of a continuous function $J(x, y), x, y \in T$. For any ferromagnetic J(J > 0) which satisfies a normalisation condition, the thermodynamic behaviour is identical to that of the Curie-Weiss model $(J \equiv 1)$. This simple case is in contrast to the behaviour for a class of translation invariant, non-ferromagnetic J, for which a continuum of equilibrium states exists for sufficiently low temperatures. In both cases a probabilistic interpretation of the equilibrium states is given.

1. Introduction

For each $n \in \{1, 2, ...\}$ we define a magnetic system on the circle $T \doteq \mathbb{R} \pmod{1}$. Let J(x, y) be an arbitrary continuous function of $x, y \in T$ and let $\beta > 0$ denote the inverse absolute temperature. Our model is defined by the partition functions

$$Z(n,\beta) \doteq \sum_{\sigma_1,\dots,\sigma_n=\pm 1} \exp\left[\frac{\beta}{2n} \sum_{j,k=1}^n J\left(\frac{j}{n},\frac{k}{n}\right)\sigma_j\sigma_k\right].$$
 (1)

Each σ_j denotes the spin at the site j/n, and the exponent in (1) equals $-\beta$ times the energy of the spin configuration $(\sigma_1, \ldots, \sigma_n)$. The case $J \equiv 1$ defines the well known Curie-Weiss (or mean field) model (Thompson 1972, § 4.5).

In this paper we contrast the relatively simple thermodynamic behaviour for ferromagnetic J (J > 0) with the much more complicated behaviour for a class of translation invariant, non-ferromagnetic J. The latter are given by

$$J(x, y) = -b + \nu \cos(2\pi p(x - y))$$
(2)

for some $b \ge 0$, $\nu \ne 0$, and $p \in \{1, 2, ...\}$. If b exceeds $|\nu|$, then J in (2) is antiferromagnetic $(J \le 0)$. Basically, in the thermodynamic limit the general ferromagnetic case behaves exactly like the Curie-Weiss model while in the non-ferromagnetic case we have continuous symmetry breaking. Full details plus generalisations are given in Eisele and Ellis (1981).

In § 2 we describe a Gibbs variational formula for the specific free energy for general J. Sections 3 and 4 list the equilibrium states and give a probabilistic interpretation of these states in the non-ferromagnetic and ferromagnetic cases, respectively.

§ Research supported by National Science Foundation Grant MCS80-02149.

0305-4470/83/010195+05 © 1983 The Institute of Physics

The probabilistic interpretation involves spin random variables $\bar{\sigma}_1^{(n)}, \ldots, \bar{\sigma}_n^{(n)}$. These are defined by the joint density

$$P_{n,\beta}\{\bar{\sigma}_1^{(n)} = \sigma_1, \dots, \bar{\sigma}_n^{(n)} = \sigma_n\} \doteq \left[\exp\left(\frac{\beta}{2n} \sum_{j,k=1}^n J(j/n, k/n)\sigma_j\sigma_k\right) \right] / Z(n,\beta),$$
(3)

where $(\sigma_1, \ldots, \sigma_n)$ is any configuration of spins. The density (3) defines the Gibbs measure corresponding to the partition function $Z(n, \beta)$. The probabilistic behaviour of the Curie-Weiss model has been studied extensively in Ellis and Newman (1978a, b) and Ellis *et al* (1980).

2. Gibbs variational formula

The specific free energy $\psi(\beta)$ is defined by the formula

$$-\beta\psi(\beta) \doteq \lim_{n \to \infty} \frac{1}{n} \log Z(n,\beta).$$
(4)

Our first result is a variational formula for $\psi(\beta)$. We define B to be the space of measurable functions f on T for which

$$-1 \le \operatorname{ess\,inf} f \le \operatorname{ess\,sup} f \le 1,\tag{5}$$

where ess inf and ess sup denote essential infimum and essential supremum, respectively. For each $f \in B$ we define the functional

$$u(f) \doteq -\frac{1}{2} \int_{T} \int_{T} J(x, y) f(x) f(y) \, \mathrm{d}x \, \mathrm{d}y.$$
(6)

Let i(z) denote the non-negative, strictly convex function

$$i(z) \doteq \begin{cases} \frac{1}{2}(1+z)\log(1+z) + \frac{1}{2}(1-z)\log(1-z) & \text{if } |z| \le 1, \\ \infty & \text{if } |z| > 1, \end{cases}$$
(7)

and s(f) the functional

$$s(f) \doteq -\int_{T} i(f(x)) \, \mathrm{d}x. \tag{8}$$

Theorem 1. Let J(x, y) be an arbitrary continuous function of $x, y \in T$. Then for $\beta > 0$

$$\psi(\beta) = \inf\{u(f) - (1/\beta)s(f): f \in B\}.$$
(9)

We think of B as the set of all possible states of the system in the thermodynamic limit. Then in the state f, u(f) gives the energy, s(f) the entropy, and $u(f) - \beta^{-1}s(f)$ the free energy.

Definition 2. A function $\tilde{f} \in B$ is called an equilibrium state at inverse temperature β if

$$u(\tilde{f}) - (1/\beta)s(\tilde{f}) = \inf\{u(f) - (1/\beta)s(f): f \in B\}.$$
(10)

We denote by $G(\beta)$ the set of all equilibrium states at inverse temperature β .

In order to motivate the results that follow, we point out that the equilibrium states in the limits $\beta \uparrow \infty$ and $\beta \downarrow 0$ are easy to find explicitly. By theorem 1 the totally ordered states, which are defined to be the equilibrium states in the limit $\beta \uparrow \infty$, are the functions \tilde{f} which minimise u(f). For any J > 0, we have $\tilde{f} \equiv 1$ or $\tilde{f} \equiv -1$. Now let J be given by (2) and define the function

$$g(x) \doteq \begin{cases} 1 & \text{if } \cos(2\pi px) > 0, \\ -1 & \text{if } \cos(2\pi px) < 0, \\ 0 & \text{if } \cos(2\pi px) = 0. \end{cases}$$
(11)

Then either $\tilde{f}(x) = g(x)$, $x \in T$, or (since J is translation-invariant) $\tilde{f}(x) = g(x + \lambda)$, where the phase shift λ is some number in T. Thus for J given by (2) we have continuous symmetry breaking in the limit $\beta \uparrow \infty$. In the limit $\beta \downarrow 0$, (9) does not make sense, but it is consistent with (9) to define the equilibrium states to be the functions \tilde{f} which maximise s(f). Since s(f) is non-positive for all f, we have $\tilde{f} \equiv 0$ for any J.

3. Non-ferromagnetic J

Let J be given by (2). We first describe $G(\beta)$ for all $\beta > 0$. For each $\beta > 2/|\nu|$, one checks that the equation

$$\mu = \int_{T} \cos(2\pi px) \tanh[\beta \nu \mu \, \cos(2\pi px)] \, \mathrm{d}x \tag{12}$$

has a unique positive root $\mu = \mu(\beta, \nu, p)$. We define

$$g_{\beta}(x) \doteq \tanh[\beta \nu \mu \, \cos(2\pi p x)], \qquad x \in T.$$
(13)

This is an odd function of $cos(2\pi px)$, and so it has the same periodicity properties as J.

Theorem 3. For J given by (2),

$$G(\beta) = \begin{cases} \{0\} & \text{if } 0 < \beta \leq 2/|\nu|, \\ \{g_{\beta}(+\lambda); \lambda \in T\} & \text{if } \beta > 2/|\nu|. \end{cases}$$
(14)

Theorem 3 is consistent with the discussion at the end of § 2 since g_{β} in (13) tends to the function g in (11) as β tends to ∞ .

For the probabilistic interpretation, we recall the spin random variables $\tilde{\sigma}_1^{(n)}, \ldots, \tilde{\sigma}_n^{(n)}$ with joint density (3). Given an interval Δ on T, we define the total spin in Δ , $W_n(\Delta)$, by the formula

$$W_n(\Delta) \doteq \frac{1}{|\Delta|} \sum_{\{j: j/n \in \Delta\}} \tilde{\sigma}_j^{(n)}, \tag{15}$$

where $|\Delta|$ denotes the Lebesgue measure of Δ . If Δ is all of T, then we write W_n instead of $W_n(T)$. We consider a global law of large numbers and local laws of large numbers for the spin. The former describes the limiting distribution of the total spin in $T, W_n/n$, as $n \to \infty$. The latter describe the limiting joint distribution of the vector of local spins $(W_n(\Delta_1)/n, \ldots, W_n(\Delta_r)/n)$, where $\Delta_1, \ldots, \Delta_r$ are r intervals in T ($r \in \{1, 2, \ldots\}$). Although the global law follows from the local laws for $r \doteq 1, \Delta_1 \doteq T$, it is useful to discuss both. We write $E_{n,\beta}\{-\}$ for the expectation with respect to the measure $P_{n,\beta}$ in (3).

Theorem 4. Let J be given by (2). Then for any continuous function h mapping \mathbb{R} to $\overline{\mathbb{R}}$, we have

$$\lim_{n \to \infty} E_{n,\beta} \left\{ h \left(\frac{W_n}{n} \right) \right\} = h(0) \text{ for all } \beta > 0.$$
(16)

More generally, for any $r \in \{1, 2, ...\}$. any r intervals $\Delta_1, ..., \Delta_r$ in T, and any continuous function h mapping \mathbb{R}^r to \mathbb{R} ,

$$\lim_{n \to \infty} E_{n,\beta} \{ h(W_n(\Delta_1)/n, \dots, W_n(\Delta_r)/n) \}$$

$$= \begin{cases} h(\mathbf{0}) & \text{if } 0 < \beta \leq 2/|\nu|, \\ \int_T h(g_\beta(\lambda; \Delta_1), \dots, g_\beta(\lambda; \Delta_r)) \, d\lambda & \text{if } \beta > 2/|\nu|. \end{cases}$$
(17)

Here **0** is the constant vector $(0, \ldots, 0) \in \mathbb{R}^r$ and $g_\beta(\lambda; \Delta_j)$ is defined as $|\Delta_j|^{-1} \int_{\Delta_j} g_\beta(x + \lambda) dx$.

In order to interpret the limit (17), we assume that each Δ_i is a small interval with centre $x_i \in T$. Then for $\beta > 2/|\nu|$, the right-hand side of (17) is close to $\int_T h[g_\beta(x_1 + \lambda), \ldots, g_\beta(x_r + \lambda)] d\lambda$. The latter is the expectation of the random variable $h[g_\beta(x_1 + \lambda(\omega)), \ldots, g_\beta(x_r + \lambda(\omega))]$, where $\lambda(\omega)$ is a random phase shift, uniformly distributed in T. Theorem 4 implies that for all $\beta > 0$ we have zero magnetisation per site as $n \to \infty$ (because of (16)) but for $\beta > 2/|\nu|$ the spins cluster into 2p alternating islands of plus spins and minus spins as $n \to \infty$. The spins are described locally by a wave with shape g_β but with random phase shift.

4. Ferromagnetic J

We assume that J(x, y) > 0 is a continuous function of $x, y \in T$ which satisfies the normalisation conditions

$$\int_{T} J(x, y) dy = 1 = \int_{T} J(x, y) dx \qquad \text{for each } x, y \in T.$$
(18)

We show that the thermodynamic behaviour for such J is identical to that for the case $J \equiv 1$, which defines the Curie-Weiss model.

For $\beta > 1$ the Curie-Weiss model exhibits spontaneous magnetisation. The value of the latter is a number $m(\beta)$ which is the unique positive solution of the equation

$$\tanh(\beta m) = m. \tag{19}$$

For $0 < \beta \le 1$, there is no spontaneous magnetisation.

The next two theorems are the analogues of theorems 3 and 4, respectively. We write 1 for the constant function 1 on T.

Theorem 5. Let J(x, y) > 0 be a continuous function of $x, y \in T$ which satisfies (18). We have

$$G(\beta) = \begin{cases} \{0\} & \text{if } 0 < \beta \le 1, \\ \{m(\beta)\mathbf{1}, -m(\beta)\mathbf{1}\} & \text{if } \beta > 1. \end{cases}$$
(20)

Theorem 6. Let J be as in theorem 5. Then for any continuous function h mapping \mathbb{R} to \mathbb{R}

$$\lim_{n \to \infty} E_{n,\beta} \{ h(W_n/n) \} = \begin{cases} h(0) & \text{if } 0 < \beta \le 1, \\ \frac{1}{2} [h(m(\beta)) + h(-m(\beta))] & \text{if } \beta > 1. \end{cases}$$
(21)

More generally, for any $r \in \{1, 2, ...\}$, any r intervals $\Delta_1, ..., \Delta_r$ in T, and any continuous function h mapping \mathbb{R}^r to \mathbb{R} ,

$$\lim_{n\to\infty} E_{n,\beta}\{h(W_n(\Delta_1)/n),\ldots,(W_n(\Delta_r)/n)\}$$

$$=\begin{cases} h(\mathbf{0}) & \text{if } 0 < \beta \leq 1, \\ \frac{1}{2}[h(\boldsymbol{m}(\beta)) + h(-\boldsymbol{m}(\beta))] & \text{if } \beta > 1. \end{cases}$$

Here $\boldsymbol{m}(\boldsymbol{\beta})$ is the constant vector $(\boldsymbol{m}(\boldsymbol{\beta}), \ldots, \boldsymbol{m}(\boldsymbol{\beta})) \in \mathbb{R}^{r}$.

We refer to the states $m(\beta)\mathbf{1}$ and $-m(\beta)\mathbf{1}$ in (20) as the plus state and the minus state, respectively. In contrast to the situation in theorem 4, theorem 6 shows that for ferromagnetic interactions, the local structure of both the plus state and the minus state completely mimics the global structure.

References

Eisele T and Ellis R S 1981 Symmetry breaking and random waves for magnetic systems on a circle. Univ. Heidelberg/Univ. Massachusetts preprint Z. Wahrscheinlichkeitsth. u. verw. Geb. (to appear)

Ellis R S and Newman C M 1978a Z. Wahrscheinlichkeitsth. u. verw. Geb. 44 117-39 — 1978b J. Stat. Phys. 19 149-61

Ellis R S, Newman C M and Rosen J S 1980 Z. Wahrscheinlichkeitsth. u. verw. Geb. 51 153-69 Thompson C 1972 Mathematical Statistical Mechanics (New York: Macmillan) § 4.5 (22)