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Continuous symmetry breaking in a mean-field model 
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t Institut fur Angewandte Mathematik, Universitat Heidelberg, Im Neuenheimer Feld 
294, D-6900 Heidelberg 1, BRD 
j: Department of Mathematics and Statistics, University of Massachusetts, Amherst, 
Massachusetts, 01003, USA 

Received 14 June 1982 

Abstract. A magnetic system on the sites { j / n  ; j = 1, . . . , n }  of the circle T =  R (mod 1) 
is studied in the limit n + 03. The interaction is defined in terms of a continuous function 
J ( x ,  y ) ,  x ,  y E T. For any ferromagnetic J ( J  > O )  which satisfies a normalisation condition, 
the thermodynamic behaviour is identical to that of the Curie-Weiss model ( J  = 1). This 
simple case is in contrast to the behaviour for a class of translation invariant, non- 
ferromagnetic J,  for which a continuum of equilibrium states exists for sufficiently low 
temperatures. In both cases a probabilistic interpretation of the equilibrium states is given. 

1. Introduction 

For each n E (1, 2 ,  . . .} we define a magnetic system on the circle T =  R (mod 1). Let 
J(x,  y )  be an arbitrary continuous function of x, y E T and let p > 0 denote the inverse 
absolute temperature. Our model is defined by the partition functions 

Each wj denotes the spin at the site j / n ,  and the exponent in (1) equals - p  times the 
energy of the spin configuration ( u ~ ,  . . . , U,,). The case J = 1 defines the well known 
Curie-Weiss (or mean field) model (Thompson 1972, § 4.5). 

In this paper we contrast the relatively simple thermodynamic behaviour for 
ferromagnetic J (J > 0) with the much more complicated behaviour for a class of 
translation invariant, non-ferromagnetic J.  The latter are given by 

J ( x , y ) =  -b+vcos(2.rrp(x-y)) ( 2 )  
for some b 3 0, v # 0, and p E {1,2, . . .}. If b exceeds Iv/, then J in (2) is antiferromag- 
netic (J s 0). Basically, in the thermodynamic limit the general ferromagnetic case 
behaves exactly like the Curie-Weiss model while in the non-ferromagnetic case we 
have continuous symmetry breaking. Full details plus generalisations are given in 
Eisele and Ellis (1981). 

In § 2 we describe a Gibbs variational formula for the specific free energy for 
generalJ. Sections 3 and 4 list the equilibrium states and give a probabilistic interpreta- 
tion of these states in the non-ferromagnetic and ferromagnetic cases, respectively. 
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The probabilistic interpretation involves spin random variables a:"', . . . I a!,"). These 
are defined by the joint density 

where (cl, , . . , CT,) is any configuration of spins. The density (3) defines the Gibbs 
measure corresponding to the partition function Z (n ,  p ) .  The probabilistic behaviour 
of the Curie-Weiss model has been studied extensively in Ellis and Newman (1978a, b) 
and Ellis et a1 (1980). 

2. Gibbs variational formula 

The specific free energy $ ( p )  is defined by the formula 

1 
- p Q ( p )  = lim -log Z ( n ,  p ) .  

,+a; n (4) 

Our first result is a variational formula for (L(p). We define B to be the space of 

( 5  i 
where ess inf and ess sup denote essential infimum and essential supremum, respectively. 
For each f E B we define the functional 

measurable functions f on T for which 

- 1 s ess inf f s ess supf =s 1, 

Let i (z )  denote the non-negative, strictly convex function 

and s(f) the functional 

Theorem 1. Let J ( x ,  y )  be an arbitrary continuous function of x, y E T. Then for p > 0 

(9) 

We think of B as the set of all possible states of the system in the thermodynamic 
limit. Then in the state f ,  u ( f )  gives the energy, s ( f )  the entropy, and u ( f ) - P - ' s ( f )  
the free energy. 

(L(P 1 = i n f b  ( f )  - (1 / P  )s ( f ) :  f E B l. 

Definition 2. A function ~ E B  is called an equilibrium state at inverse temperature 
p if 

U cf, - (1 / P  )S = inf{u c f )  - (1 / P  1s (f): f E Bl. (10) 

We denote by G(P)  the set of all equilibrium states at inverse temperature p. 



Continuous symmetry breaking in a mean-field model  197 

In order to motivate the results that follow, we point out that the equilibrium 
states in the limits /3 t cc and p L O  are easy to find explicitly. By theorem 1 the totally 
ordered states, which are defined to be the equilibrium states in the limit p ?a, are 
the functions f which minimise u( f ) .  For any J > O ,  we have f =  1 or f =  -1. Now 
let J be given by (2) and define the function 

1 if cos(2xpx) >O,  
if cos(2xpx) < 0, 
if cos(2xpx) = 0. 

Then either f(x) = g(x), x E T, or (since J is translation-invariant) { ( x )  = g(x + A ) ,  
where the phase shift A is some number in T. Thus for J given by (2) we have 
continuous symmetry breaking in the limit p .T 00. In the limit p .1 0, (9) does not make 
sense, but it is consistent with (9) to define the equilibrium states to be the functions 
{ which maximise s(f). Since s(f) is non-positive for all f, we have {= 0 for any J. 

3. Non-ferromagnetic J 

Let J be given by (2). We first describe G(p)  for all p > O .  For each p >2/1v1, one 
checks that the equation 

p = [Tcos(2xpx) tanh[pvp cos(2xpx)] dx (12) 

has a unique positive root p = p (p,  v, p ) .  We define 

gp(x) = tanh[pvy cos(2xpx)], x E T. (13) 
This is an odd function of cos(2xpx), and so it has the same periodicity properties as 
J. 

Theorem 3. For J given by (2), 

Theorem 3 is consistent with the discussion at the end of § 2 since gp in (13) tends 

For the probabilistic interpretation, we recall the spin random variables 
with joint density (3). Given an interval A on T, we define the total 

to the function g in (11) as /3 tends to 00. 

u1 , . , , 
spin in A,  W,,(A),  by the formula 

- (n) 

where lAl denotes the Lebesgue measure of A .  If A is all of T, then we write W,, 
instead of W , ( T ) .  We consider a global law of large numbers and local laws of large 
numbers for the spin. The former describes the limiting distribution of the total spin 
in T, W J n ,  as n -* 00. The latter describe the limiting joint distribution of the vector 
of local spins ( W , , ( A l ) / n , .  . . . , W , , ( A , ) / n ) ,  where A I ,  . . . , A ,  are r intervals in T (r  E 
{1,2, . . .}). Although the global law follows from the local laws for r =  1, A I  = T, it is 
useful to discuss both. We write E n , P { - }  for the expectation with respect to the 
measure Pn,@ in (3). 
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Theorem 4. Let J be given by (2). Then for any continuous function h mapping 
R to R, we have 

More generally, for any r E {1,2 , .  . .}. any r intervals A I ,  . . . , Ar in T, and any con- 
tinuous function h mapping R' to R, 

(17) lim En,@{h( W,,(Al)/n, .  . . , w, , (A , ) /n ) )  
n-m 

if O<p s 2 / l v l ,  1;: h(gp(A; AI) ,  - , Ar)) if P >2/IvI. 

- - 

Here 0 is the constant vector (0 ,  . . . , 0) E R' and g p ( A  ; Ai) is defined as IA,l-' JA, gp(x + 
A )  dx. 

In order to interpret the limit (17), we assume that each Aj is a small interval with 
centre x i €  T. Then for P >2/1v1, the right-hand side of (17) is close to J T h [ g p ( x l +  
A ) ,  . , , , g p ( x r + A ) ]  dA. The latter is the expectation of the random variable h [ g p ( x l +  
A ( U ) ) ,  . . . , gp(xr  + A  ( U ) ) ] ,  where A ( U )  is a random phase shift, uniformly distributed 
in T. Theorem 4 implies that for all p > O  we have zero magnetisation per site as 
n + 03 (because of (16)) but for P >2/lvl the spins cluster into 2 p  alternating islands 
of plus spins and minus spins as n + 03. The spins are described locally by a wave 
with shape g p  but with random phase shift. 

4. Ferromagnetic J 

We assume that J ( x ,  y )  > O  is a continuous function of x ,  y E T which satisfies the 
normalisation conditions 

I T J ( x ,  y)dy = 1 = J ( x ,  y )  dx I, for each x ,  y E T. (18) 

We show that the thermodynamic behaviour for such J is identical to that for the 
case J = 1, which defines the Curie-Weiss model. 

For /3 > 1 the Curie-Weiss model exhibits spontaneous magnetisation. The value 
of the latter is a number m ( P )  which is the unique positive solution of the equation 

tanh(pm) = m. (19) 
For 0 < P s 1, there is no spontaneous magnetisation. 

write 1 for the constant function 1 on T. 
The next two theorems are the analogues of theorems 3 and 4, respectively. We 

Theorem 5. Let J ( x ,  y )  > O  be a continuous function of x ,  y E T which satisfies (18). 
We have 
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Theorem 6. Let J be as in theorem 5 .  Then for any continuous function h mapping 
R to R 

More generally, for any r E {1,2, . . .}, any r intervals A I , .  . . , A, in T, and any con- 
tinuous function h mapping R' to R, 

We refer to the states m ( p ) l  and - m ( P ) l  in (20) as the plus state and the minus 
state, respectively. In contrast to the situation in theorem 4, theorem 6 shows that 
for ferromagnetic interactions, the local structure of both the plus state and the minus 
state completely mimics the global structure. 
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